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NODAL SETS FOR SOLUTIONS
OF ELLIPTIC EQUATIONS

ROBERT HARDT & LEON SIMON

Here we study, on a connected domain Q C R”, the zero set u~' {0} of
a solution u of an elliptic equation

a;jDiDju+ bjDju+ cu =0,

where a;;, b;, ¢ are bounded and g;; is continuous.

Our principal result (precisely stated in Theorem (1.7) below) is that
the (n — 1)-dimensional Hausdorff measure of #~!{0} is finite in a neigh-
borhood of any point xg € Q2 at which « has finite order of vanishing. (For
Lipschitz a;; this holds at each point xo € Q by the unique continuation
theory for elliptic equations.) We actually obtain an explicit bound on the
Hausdorff measure of #~!{0} in terms of the order of vanishing of u, the
modulus of continuity of &;;, and the bounds on «;;, bj, c.

Notice that in the case the coefficients a;;, b;, ¢ are analytic, u is then
real analytic [8], and the finiteness of the (n — 1)-dimensional Hausdorff
measure of #~1{0} is automatic [3, 3.4.8]. The explicit bound on the
(n — 1)-dimensional Hausdorff measure is nevertheless of interest in this
case, but a more precise estimate for the real analytic case was already
established in [2].

We also show here (in Theorem (1.10)) that if the coefficients are suffi-
ciently smooth then u~!{0} decomposes into a disjoint union of the em-
bedded C' submanifold ¥~ '{0} n {|{Du| > 0} together with the closed
set u~'{0} N |Du|~'{0}, which we show is countably (n — 2)-rectifiable.
L. Caffarelli and A. Friedman showed already in [1] that dimu~'{0} N
[Du|~1{0} < n — 2 in the case of equations of the special form Au +
f(x,u) = 0. We thank F. H. Lin for pointing out this reference.

In §5 of the present paper we apply the main estimates of §1 and an
estimate of Donnelly and Fefferman [2] for the order of vanishing of eigen-
functions to give an asymptotic bound of the (n — 1)-dimensional measure
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of u;l{O}, where u; is an eigenfunction corresponding to the jth eigen-
value of the Laplacian on a compact Riemannian manifold. In the real
analytic case, a more precise estimate was obtained in [2], but the results
of the present paper seem to be the first estimates for the smooth case.

1. Statement of main results

We consider the second order linear equation
(1.1) aijDiDju+b;Dju+cu=0
on a domain  C R”?, and we assume the following:
(1.2) aij(xo) = dij,

where xo denotes a given point of  (note that this assumption really
involves no loss of generality because we can always achieve it with a
suitable linear transformation, provided the original equation is at least
elliptic at xy),

(1.3) laij(x) — a;j(x0)] < o(lx ~x0]), x€L,

where ¢ is an increasing continuous function on [0, o) with ¢(0) =0 (o
is a modulus of continuity for g;; at xy),

(1.4) sup |b;] < w1, suplc| < p,

where u;, u; are constants.

Concerning the solution u# of (1.1) we assume u € C}(Q) N Hli’cz(Q)
(hence u € CY2(B,(xo)) N H*?(B,(xp)) Ya € (0,1), p > 2, by the elliptic
regularity theorem, provided p < dist (xo, 8Q) and o(p) < ¢! for suitable
¢ = ¢(n)), and we consider a point xo € ¥~ {0} at which u has finite order

of vanishing. Thus we assume that there exists an integer 4 > 0 such that

(%) limsup p~%|lull, > 0,
pl0

where, here and subsequently, ||u||f, = p pr(xo) u?. (Recall [6], [4] that
such a d exists automatically if the q,; are Lipschitz.) Then there exist
arbitrarily small numbers R such that

(1.5) lullz < 27" |ullgye,

because otherwise ||u, > 2¢*!|u|,/, for all sufficiently small p, and it-

eration of this implies that limsup,|, p~4 Yull, < oo, contrary to the
hypothesis (x).
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We subsequently use the notation

(1.6) 8(p) = a(p) + w1 p + map*.

Our first result asserts that the #"~! measure of ¥~!{0} is bounded in a
neighborhood of x; in terms of », 4, d, and a certain constant py € (0, R).
Specifically we have the following.

(1.7) Theorem. There exist constants ¢ = c(n) > 0 and g = g(n) €
(0,1/2] such that if xo € u='{0}, if po > 0 is small enough to ensure that
6(R) < &% and Br(xg) C Q, with R = ¢ 1py and ¢ = &9/d*"+3, and if
(1.1)-(1. 5) all hold, then

(i)

A" (By(x0) Nu~{0}) S edp™ ! (< 00) Vp < po,

(i1) _

dim{B,,(x0) Nu~ {0} N |Du|~'{0}} < n-2.

Thus B,(xo)Nu~!{0} decomposes into a union of the (n—1)-dimensional
C! submanifold B,(xo)Nu~1{0}N{|Du| > 0} with finite (n—1)-dimensional
measure, and a closed set B,(xo) N u~'{0} N {|Du|~'{0} of dimension
<n-2.

(1.8) Remarks. (1) An inequality like (ii) was established for equa-
tions of the form Au + f(x,u) = 0, in case Au is the standard Euclidean
Laplacian, in [1]. (See the discussion in (1.9) below.)
~ (2) It is perhaps worth mentioning explicitly that in the course of the
proof of Theorem (1.7) (see Remark (4.6) below) we show that for any
given # > 0 we can bound the order of vanishing of  at any y € B,(xg) by
d + 0, for suitable p > 0. Of course, if u € C%(Q), the order of vanishing
of u is trivially < 4 in some ball B,(xp).

(3) The results of the above theorem remain true (and the proofs need
very little modification) in case equation (1.1) is replaced by the divergence-
form equation

(1.1 Di(a;jDju) + D;(b;u) + biDju+cu =0,
if

(1.2") laijl <y, ai&id; > €,
(1.3 |bi| + 1bil + |cl < p

hold, and a,;, b; are Holder continuous with exponent o for some a €
(0, 1). Actually it would suffice in (1.3’) that b;, ¢ € L? for suitable p.

(4) Of course the results of Theorem (1.7) apply to fully nonlinear sec-
ond order elliptic equations of the form

a;j(x, u, Du, D*u)D;D;u + b;(x, u, Du, D*u)D;u + c(x, u, Du, D*u)u = 0,
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provided u € C?, a; ;j is continuous, and b;, ¢ are bounded, because such
an equation has the form (1.1)-(1.4) with suitable o, 4.

Next we want to give a more precise discussion of the set = '{0} N
|Du|='{0} near xo. For this we need a;;,b;,c € C4(Q), so that u €
C4+Lbe(Q) Ya € (0, 1) by the elliptic regularity theory. Then we have:

(1.9) Lemma. If (1.1) holds with u # const, a;j,bj,c € C4(Q), a;;
is positive definite on Q, and (x) holds at each point xo € u='{0}, then
u~1{0} N |Du|~'{0} decomposes into the countable union of subsets of a
pairwise disjoint collection of smooth (n — 2)-dimensional submanifolds.
(Thus u='{0} N |Du|~'{0} is a countably (n — 2)-rectifiable subset in the
terminology of [3].)

Proof. The argument is essentially that used by Caffarelli and Friedman
[1]. Foreach g =1,2,3,---, we let

(1) S, = {x: D*u(x) = 0 V|a| < g and D" u(x) # 0}.

Evidently, in view of Remark (1.8)(3) we have, for any xp with u(xp) = 0,
Du(xy) = 0 and for suitable p > 0, that

() By(x0) N {x: u(x) =0, Du(x) = 0} = (UL_,S,) N By(x0),
and of course v
(3) S,NS; =& forp#gq.

Now consider x € S; and choose a multi-index § with || =¢ — 1 and
Hess(Dfu)(x) # 0. By applying D# to each side of (1.1) and using the fact
that D%y = 0 Yo with |a] < ¢, we get

0%(DPu)
aij (x)m =0, |
so that, since (a;;(x)) is positive definite and Hess(D#u)(x) 3 0, we must
have rank Hess(Dfu(x)) > 2.

Thus we can choose ij,i; € {l,---,n} such that grad(D; Dfu),

grad(D;,D#u) are linearly independent at x, hence for some p > 0
B,(x) N (D;, DPu)~'{0} N (D;, D u)~' {0}

is an embedded (n — 2)-dimensional submanifold My ., which contains
all of B,(x)N.S;.

We have thus shown that for each x € u~'{0} n |Du|~1{0} we can
find p > 0 and smooth embedded (n — 2)-dimensional submanifolds
Mg, x4, > Mg xq such that

B,(x)nu~'{0} N |Du|~'{0} C Uj_ Mp, x4,
This completes the proof of Lemma (1.9).
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Notice that by combining Theorem (1.7), Lemma (1.9) and the unique
continuation theory for elliptic equations we arrive at:

(1.10) Theorem. Suppose that (1.1) holds with u # const and that in
addition a;j, b;,c € C*(Q) and a;; is positive definite on Q. Then u='{0}
decomposes into the disjoint union (u='{0} n {|Du| > 0}) U (1~1{0} N
|Du|=1{0}) of smooth (n — 1)-dimensional manifold having finite (n — 1)-
dimensional measure in each compact subset of Q and a closed countably
(n — 2)-rectifiable subset.

2. An estimate for the zero set of a polynomial

(2.1) Theorem. Let g: R* — R be a polynomial of degree < d and
suppose that dimq~'{0} < k. Then

Z*(qg~'{0}n B)) < cd" ¥,
where ¢ depends only on n.

Proof. In case k = 0, ¢g~'{0} is a finite set, and the inequality follows
from [7, Theorem 2], which bounds the sum of Betti numbers, hence the
number of components of ¢~1{0}, by d(2d — 1)"~! < cd™.

In case k > 0, we use the coordinate projections

pi:Rn_)Rka p}.(xls"'3xn)=(xils”':xik):
defined for 2 € A(n,k) = {(ir,+~,ix) € Z¥: ¢ < iy < - < iy < n}.
Assuming dim ¢~'{0} < k, we infer from the inequality [3, 2.10.28] that
g~ '{0} np;'{y} is finite for each A € A(n,k) and almost all y € R¥. For
such 1, y,

cardg~ {0} np; {y} < d(2d — 1"+~ < cd™*

as in the previous case because g~'{0} Np; 1{y} is defined by the vanishing
of a polynomial of degree < d on a Euclidean space of dimension n — k.
Using this estimate and [3, 3.2.27] we conclude

0B Y [ cardg (0 nppt(p}dFty <cdn .
2i(B1) .

AEA(nK)

3. Estimates for the zero sets of harmonic polynomials

Let ¢ be a harmonic polynomial of degree d in R" and ¢ # const. We
note that (2.1) (with k = n — 1) gives

(3.1) #"1(¢~{0} N By) < cd.
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Also, dim|D¢|~'{0} < n — 2, because otherwise we would have
dim|D¢|~'{0} = n — | and by stratification of algebraic varieties (see
[11]) we could find a smooth connected (n — 1)-dimensional submanifold
M of R" with |D¢| =0 on M. Since ¢ = const on M we would then have
¢ — const satisfying zero Cauchy data on M, thus contradicting unique
continuation for harmonic functions. In particular, we can now deduce
from Theorem (2.1) (with k = n — 2) that

(3.2) #"-2(Dg|" {0} N By) < cd®.

Our main estimate for harmonic polynomials is given in the following
theorem.

(3.3) Theorem. There are constants 8 = 0(n) € (0,1/2) and ¢ =
c(n) > 0 such that if ¢ is a harmonic polynomial of degree d in R,
supp, |¢ — #(0)| = 1, and |D(0)| < (6e)?~!, then

LBy N {x: dist(x, {|D¢| < (8e)Y7'}) < &}) < cd*"*2e?loge™!

Jor each ¢ € (0,1/2].

Remark. It seems likely that the lemma may be true without the factor
loge~! on the right, but such an inequality would not significantly improve
the main results of the present paper.

Proof of Theorem (3.3). The proof is a fairly straightforward application
of Theorem (2.1) together with standard estimates for harmonic functions
and the coarea formula.

First notice that we must automatically have that d is > 2 and that for
each z € B|(0) and each ¢ € (0, 1/2]

(1) sup |D?%¢| > 6(20¢)¢ 2
B.(z)
for suitable 8 = 8(n) € (0, 1/2). Indeed the given facts about ¢ tell us that
(2) sup [D?¢| >c™!,  c=c(n),
B (0)

so d > 2. Also if (1) were false for a given z € B;{(0), then stan-
dard estimates for the derivatives of harmonic functions would imply that
(@)~ D*¢(z)| < cB(c)?-? for every multi-index a with 2 < |a| < d,
which for small enough 6 = 8(n) contradicts (2) and the fact that each
component of D?¢ is a polynomial of degree < d — 2.

We now fix § = 0(n) so that (1) holds, and we proceed to prove the
theorem.

Take any y € B (0) with |[D¢(y)| < (8¢)?-!. Since each component of
D?¢ behaves like a homogeneous polynomial of degree < d—2 near infinity,
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the growth estimates of the appendix, together with standard estimates for
the maximum of a harmonic function in terms of its L? norm (over a larger
set), imply

(3) & sup |D’¢|+ sup |D?¢|<ca(1+3a) sup |D?¢|
By () B0y (¥) B —s)e(¥)

< co™ (1 + 30)? sup |D?4|
B:(»)

for ¢ € (0, 1/4], where ¢ = c(n).
Notice also that if 8 € (0,1), and x; € B,(p) is such that|D?¢(x;)| =
supp,(,) [D?4|, then by (3) we get

(4) |D*(x) — D*p(x1)| < cBa™' (1 + 30)*|D*p(x1),  x € Bg(x1),
so that
cfa ' (1+30)? <1/2 = |D*¢(xy)| < ZBh}f | |D%¢).
gelX1

Thus if we select

(5) o=c'd”!, B=yd!

for suitable ¢ = ¢(n) and y = y(n), then

(6) |D*¢(xy)| < 2 lnf ID2¢I
a .X'|

Also if x € B,(y), then trivially for any unit vector 7 € R"

ID:(x) ~ D:(y)| < &|D?*¢(x1)),

and hence
[D:d(x)| < (8)7~" + &|D (x|
< celD*¢(xy) by (1)
<ce inf |D2¢| by (6),
Be/d x1)
so that
(7) [D:¢(x)| < celD*¢(x)| at each point x € By,;4(x1),

where y = p(n) (as in (5)).

By (4) and (6) we also conclude that if 1), 7, are any pair of unit vectors
in R”, and x € B,;q4(x1), then
(8) |D,,D,2¢(x) - D11D12¢(—x1)| S Cy lnf lD2¢|

s/t/ l
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Next, let &, be a collection of orthonormal bases of R” such that for
any orthonormal basis {7,,---,7,} of R" there is an orthonormal basis
{#1,---,%n} € &, with

(9) |t; — ;| < y/d, j=1,--,n
We can, and we shall, choose such a set &, in such a way that
(10) number of elements in &, <cy!'="d""!,  c=c(n).

With x| € B,(p) as in (4) above, let 7;,--- , 7, be an orthonormal basis
of R" such that

1D Deb(xi) = _max DDy drnl,
|D12D12¢(x1 ), = je?}-af(n} ID-;jDTj(ﬁ(XI)I,

D‘t;D1,-¢(xl) =0, i #].
Furthermore since }:;; y Dy, D; ¢ =0, we have
|De, D, d(x1)] = (1 — 1)——1|D1|D11¢(xl)|'

Then by (8) and (9) we can select an orthonormal basis %,,---,%, € &,
such that

[é11(x) = ¢! jehax | B ()
(11) |baz(x)} > c“j max |d>,,(x)|
(%) < cyldm(X)I, i#J,

for each x € B,,/4(x;), where we use the notation ¢;;(x) = Dz Dz, ¢(x).

Now by (6), (7), and (11) we have, with ¢; = D; ¢,
(12) ¢! < De(x)| 2D

< ce?((¢1(x))? + (92)2) !
X (ID¢11*(x)|Dé2|*(x) — (Dé1(x) - Dga(x))*)'/?

for each x € B,;/4(x)), provided we take y = y(n) sufficiently small.

Define J to be the Jacobian of the transformation x — (¢;(x), 2(x)),
X € Bys/d(xl), that is, J = \/,D¢1|2!D¢2I2 (D¢ - D)2, In view of (12)
we have
(13) ' <eX(pt(x) + ¢3(x)) "' J(x) at each point x € By, a(x1).

Also by (11), (6), and (1) we have |$22(x)|, [611(x)| > (6e)=2 for x €
B, 4(x), and hence

(14) |62l |¢1} = ¢~ pd " (Be)* "
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on a subset 4 of B, /,(x,) with Z"(A4) > ¢~'(ye/d)", where ¢ = c(n).
By (13) and (14) we deduce from the coarea formula [3, 3.2.22] that

il ?
c—ld—nsn < 82/ / (S2 + t2)_1
(c=le)d J(c—le)d

x S22 ({x € B,(y): i(x) = 5,2(x) = 1)) dsdt,

,

(15)

for suitable ¢ = c¢(n).

Now select a maximal pairwise-disjoint collection of balls
{Be/z(yj)}jzl,...,M with yi € {x € B](O) |D¢(X)| S (6£)d_1}, and sum
over j after replacing y by y; in (15). Then (keeping in mind that &, has
< ¢d"! elements) we get :

ZM({x € B;(0): dist(x, {|Dg| < (8e)?~'}) < &})

Cd Cd
<carig [ [ (e
(c='e)d J(c—tey

-max 7" ({x € By(0): ($1(x) = ) + (¢a(x) — ) = 0}) dsat.

The required inequality now follows from (10) and Theorem (2.1) because
dim{x € By(0): ¢1(x) =5,¢2(x) =t} <n—2forae. (s,1) €(0,1) x(0,1)
by the coarea formula, and because [ [* (s +¢*)"'dsdt < cloga™!
for each a € (0,1/2).

4. Proof of Theorem (1.7)

Notice that by translation x — x — xp and a homothety x — 5 x,
so that Br(xp) is transformed to Bg, (0), R; = ¢™!, the equation is trans-
formed into an equation of the form

(4.1) Au=a-D*u+b-Du+cu on Bg(0)
with
(4.2) sBup(|a| +1B] + le]) < 8(e~' o),

Ry

where ¢ is as in (1.6).
We use the notation that if B = B,(y) C Bg,(0), then

172
lully.p = (p—" / u2> .
B
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Of course then by (1.5) we have

(4.3) 0 < lluflor, < 2%|ullo,,/2-
We assume
(4.4) (e~ pp) < &%,

where ¢ > 0 is to be chosen. Then the growth estimates of the appendix
give that we can select &g = gy(n) > 0 such that if ¢ < g then

(4.5) 0 < |lully,p < 222ty p/2

for every p < Ry — 1 and y € By(0). Indeed it would suffice merely that
8(e~ " po) < & for suitable ¢ = £(n) for this.

(4.6) Remark. Notice this implies that the order of vanishing of u at
any such y is < 2d + 1/2, because by iteration it gives

lully, pj2r > 277Dy, .

By only a slightly more complicated argument (still based directly on (*)
of §1 and the growth estimates of the appendix), we can show that the
order of vanishing of u at such y is < d + 6 for any given @ > 0, provided
¥ € B,,(0) with p; small enough, depending on 8,d.

We shall need the following lemma concerning approximation by har-
monic polynomials.

(4.7) Lemma. There is &y = gy(n) such that if ¢ < &y, (4.1)-(4.4) hold,
and B = B,(y) with p < 1 and |y| < 1, then there is a harmonic polynomial
8 of degree < 3d such that

lus — &% c1(y0y < (c8)?,
where ug is defined by up(x) = \ull; ju(y + px), and c = c(n).

Remark. A similar result holds (by essentially the same argument) with
#? a degree d harmonic polynomial, provided we are willing to assume the
stronger condition &(e=9pg) < &3 in place of (4.4).

Proof of Lemma (4.7). v = up satisfies an equation of the form
(1) Av=a-D*v+b-Dv+év
on Bg, (0), with |a| + |b] + |&| < 6(e~!po) and R, = ¢~!. By definition of
upg and by (4.5) we have
(2) luslon =1, lluslor,—1 < (cRi)**+'/2.

Let v be the harmonic function on Bg,;» with ¥ = # on 8 Bg,;>. Then
i = v — y satisfies the equation

(3) Ab=a -D*v+b-Dv+év.



NODAL SETS 515
By the H?? estimates for elliptic equations [5, Theorem 9.11] (applied to
both (1) and (3)) and by (2) we see that (for ¢ = &(n) sufficiently small)

(4) lus — Wlci sy, po) < (cRy)M*42,

By standard estimates for harmonic functions (keeping in mind that
¥ llo.z /2 < (¢R1)**Y/2 by (2) and (4)), we conclude

c=c(n).

(5) : v — Valcrsyop < RYY,

where y; denote the terms in the Taylor series expansion of i about 0 up
to and including terms of degree 3d.
It then follows that

|up ~ V/dlcl(Bz(O)) < up - V/]C'(BZ(O) + 1y - Wd'C’(Bz(O))
< |us = Wi, po) + ¥ = Walcr s,
< c{(ce™"y 667 po) + (ce)?),
by (4), (5), and the H%? theory. Thus by (4.4)
lup — ¢B|Cx(32(0)) < (ca)d,

with ¢B = Wy

We shall also use the following “nodal set comparison lemma”; the
reader should keep in mind that this is going to be applied with w, =
const ug, w, = const $®, with uz, #? as in the above Lemma (4.7).

(4.8) Lemma. There exists ny = no(n) € (0,1/2] such that with n €
(0,n9), if wy,w; € Cl'l/z(Bz(O)) with I’Ll)jlcn,x/z <1 j=12 and if
lwy — walcr < /2, then

" (Bry(0) " {wy = 0,|Dun| > n})
< (14 ey (B2(0) N {wz = 0,]Dwy| > 1/2}).

Proof. For small enough 7 (depending only on ») the following ar-
gument is valid; ¢ will denote any constant depending only on n. Let
So = w {0}, Si = {w1 = 0,|Dw| > 1}, $2 = {w; = 0,|Dwy| > n/2}, and
take any x € B,—,(0) N S;. Since (wjlcupe < 1 and |wy, — wy|cor < 1°, we
have
) |[Dwi| 2 n—mn/5>3n/4 on B, ,s(x),
|Dws| 2> n—n/5~1n>>3n/4 on By ps(x)
and, defining v; = |Dw;|~!Dw;, we calculate
i) —vi2)l < en” My =l < en'l?,

2
( ) foryl’yZ €B2n3(-x): j= 1:2a
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(3) ) ~ @) < e Dwi(v) = Dwa (W) S ety Y € By (x).
In particular by (2) and (3) we have

(4) o (y) —vi(x)| < en'?,  y € Byp(x).
We note that
5) 820 Byu(x) # @,

because, again using |w,|.2 < 1 together with (1) and the fact that
wi(x) =0,
wi(x + 7' (x)) > ind, wi(x - ntni(x)) < =i,
and hence, since [wy — wh|c < 7°/2, we have
wa(x + n*wi(x)) >0, walx ~n*ri(x)) <0,

and hence w;(x + 8n*v (x)) = 0 for some & € (0, 1), thus establishing (5).
Next, with x € S| N _Ez_,,(O) as above and with T, denoting the hyper-
plane containing x and normal to v (x), we claim

(6)
Sy N B,3(x) = Bys(x) N graphy, y¥

=B,(x)N {y +ykn(x):y € TenBp(x)}, k=02,

where y¥ € C'(T, N B,s(x)) with
(7) Dyk) < en'/?,  k=0,2.

Indeed by (2) and (4) it is at least clear that S; N B,,3(x) is contained in a

union of such graphs over the larger domain T N B,,3(X). An elementary

argument using (1) and the mean-value theorem for functions of 1 variable

then justifies (6) and (7). ‘
Notice that (5) and (7) guarantee that

(8) W) — i) <en* +en’n'? <o

The required area comparison is now fairly evident from (6), (7), and (8).

Specifically, let {B,s/4(x;)};=1,...,» be a maximal pairwise-disjoint collec-

tion of balls with x; € S} N B,_,(0). Then

(9) {B,,s/z(Xj)}jzl)...’N covers S ﬂFz_n(O),
and there is a ¢ (= c(n)) such that if ¥ C {1,---, N}, then
(10) Njes Byp(x;) # @ = F has < c elements.
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Let ¢1,---, ¢n be a partition of unity for S; N B,_,(0) with
(11)  supporte; C B,s(x;), é;2c”' on By, and |Déj| <c/n’.
Then '

N
= / Ry + Y / (EY = FD)»)dy

< #1(S20 By(0)) +Z / - F)()dy,

x; NB S(XI

where (in the notation of (6))

FE) = ¢ + vk 0O /1+ DyE 0P, k=0,2.

In view (6), (7), (8), (10}, and (11) we conclude that
7181 N Ba—y(0)) < (1 + cymZ "~ (S2 N By(0)),

- as required.

We are now going to give the proof of Theorem (1.7). We let # =
(ce)?/3 /2, with & < gg(n) and &g(n) sufficiently small so that (4.5), (4.7), and
(4.8) above can all be applied. Keeping in mind the affine transformation
described at the beginning of this section, we see that for (1.7)(i) it suffices
to prove

2" N u {0} N B,(0)) < cd.

First, by Lemma (4.7), for each ball B = B,(y) with p < 1,y € u~{0}n

B,(0), we can find a harmonic polynomial ¢? of degree < 3d such that

(1) lup ~ ¢ |c\gyoy < 1°/2.

Since y € u~'{0}, by subtracting a suitable constant from ¢?, we can also
arrange, without upsetting the inequality (1), that ¢2(0) = 0, and, since
llully2p < c2%4|lully,, (by (4.5)), we have by the H>? regularity theory,

(2) luslcrinsyoy < €% 168 | crupyioy) < €%

Notice that by (3.1)

(3) 2" H(@P)HOINBy(0)} S ed,  c=c(n).
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Notice also that, for small enough &, (1), (2), (3) and Lemma (4.8), with
n = (ce)¥3)2, w; = c~%up, wy = c~4¢%, imply
" Huz' {0} n Bin{ID¢?| > n}}
(4) < #" Yuz'{0}n By n{|Dug| > n/2}}
< 277 1{(¢%)71{0} N B, N {ID¢| > 1/4}} < cd.
Also by (1)
(5) |Dup|~'{0}NB: N {|D¢?| > n} = @.

Now we proceed to inductively define finite collections .4, A, - of
open balls, each collection covering B, (0)N|Du|~1{0}Nu~1{0}| and having
centers in B (0) Nu~1{0} as follows:

S ={B1(0)}.

Assume now that / > 1 and that %%, --,.%/_; are already defined such
that each ball in % has center in B, N »~'{0} and radius ¢*~!, and such
that
(6) Upesz B D By N |[Du|~'{0} nu~'{0},
k=0,1,---,] ~ 1. We now define .%. First for each B = B,(y) € 51—,
(p = &'~"), choose a harmonic polynomial ¢# of degree < 3d as in (1),
and let 73: R* — R” be given by t3(x) = y + px. Cover u~ {0} N BN
t5{|D¢®| < n} (> #~'{0} N B n|Du|~{0} by (1)) with a collection .#/%
of balls with centers in #~1{0} N B;(0) and radius ¢p (= &') such that the
balls of the same centers and 1/2 the radius are pairwise disjoint. Then
let & = Upes_ #®. Notice that & covers u~'{0} N |Du|~'{0} N B, by
construction, and hence the inductive definition of .¥ is complete.

Since any pairwise disjoint collection of balls of radius ¢ with centers in
{x € B(0): dist(x, {|D¢s| < n}) < &} contains at most cd>**+2¢>~"loge~!
balls by Theorem (3.3), we have

(7) number of balls in .#8 < cd?+2e?""loge™! VB e .S_,.

Let N; denote the number of balls in the collection ;. Then the above
inequality tells us that

Nj < Nj_y - cd® 2" loge™" Vj> 1,
so by induction
(8) N; < (cd®*%e2 "loge™'Y Vj> 1.
Notice also that by (4) for each B € .%/_, we have
Z Y u {0} nBN1p{|Dds| > n}} < cdp™!,
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where p = &/='. Then since the collection % covers u~'{0} N B
Ns{|D$?| < 1}, we get

© 2" {u {0} (Usesr_, B) ~ (UsessB) } < cdNi_y(e=)m.

Since B1(0) € (U (Upesr., B) ~ (Uses B)) U (NiZo(U72 Upes, B))
and since (1,20(Uj2; Upes, B) is covered by |JZ,.7; for each I, we have
by (9), (8) and the definition of #"~! that

2" Num{0yN B} <cd D (cd*Peloge™!) !
1=1

inf 2n42 —1y\j <
+}rzll]z=;(cd eloge™") < 2cd,

provided we take ¢ such that cd?**2¢loge~! < 1/2. Notice that then we
may take & = go/d?"+3 for suitable ¢y = go(n).
From (8) and the fact that each ball in the collection % has radius &/,

we have

> (diam B)"~2*0 < c(cd? %% loge™ Y.

B,
By choosing cd?"+2¢ loge~! < 1/2 (note that this choice of e—and hence
the choices of py for which the required hypothesis (4.4) holds—depends
on 8), and letting j — oo, we conclude that #"~2-%(B,(0) nu~'{0} N
|Du|~1{0}) = O for each § > 0, because .%%; covers B;(0) N u~'{0} N
|Du|~1{0} for each j > 1 by construction.

5. Application to nodal sets of eigenfunctions

Consider a compact Riemannian manifold M with C:! metric and let
0 =40 < 4; < 4, < --- be the eigenvalues of Laplacian. Let ¢; be any
eigenfunction corresponding to the eigenvalue 4;.

According to the result of Donnelly and Fefferman [2, Theorem 4.2(ii)]

(5.1) 9llz28, < 26\/ZI|¢]||L2(BP/2(,,))

for p < R, where ¢ > 0 depends only on an upper bound for the sectional
curvatures and an upper bound for diam M and where R depends only
on an upper bound for the sectional curvatures. Here B,(p) denotes the
geodesic ball centered at p and having radius p. Of course the constant R
can be selected so that we also have

(5.2) % <1, djk=1-,m,

where x denotes normal coordinates with origin corresponding to p.
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(5.3) Theorem. # "“(¢;1{0}) < clj‘/i; with ¢ a constant depending
only on an upper bound for the sectional curvatures of M and diam M.

Remark. A much more precise upper bound is proved in the real an-
alytic case in [2].

Proof of Theorem (5.3). In normal coordinates x, by (5.2) the equation
A¢p; = —A;¢, takes the form of equation (1.1) with o(¢t) = ¢, 4 = c(n),
U2 = |4;]. Then by (5.1) we have the hypotheses of Theorem (1.7) with

d = c+/7; and with pg = cA;c‘/Z. Then Theorem (1.7) applies to give the
bound

Z7\(B,(p) N 67{0)) < cy/a,0"!

for p < c}U._C‘/—l7 and any p € M. Since we can cover M by a collection of
< ¢ vol M/ p" such balls, we have the required result.

Appendix: Growth estimates

Here we record the growth results concerning elliptic equations which
were needed for the present paper. (Somewhat more general, but less
precise, estimates were introduced in [9], [10].)

We suppose
(A.1) . Au=a-D*u+b-Du+cu
on a ball Bg(0) C R”, and for p € (0, R) let
(A.2) d(p) = sup |a| + p sup |b| + p* sup |c|.
) ( B,(0) B,(0)

Then we have:

(A.3) Theorem. For any given 6 € (0,1) and any q € [1/2,00) ~
{1,2,---}, there exists ¢ = ¢(n, 0,dist(q, {1,2,-- - })) such that if (A.1) holds,
and py € (0,R) is such that 6(po) < &7 (6(p) as in (A.2)), then for any
p € (0, pol ‘ ‘ ‘

Null = 071 ull, = llulloz, = 07|ull,
where we use the notation ||u||3 = p=" 3,0 u?,

Proof. First note that if 8(p) = 0, then u is a harmonic function and

in this ease (using expansion by harmonic polynomials) we have

(o o)
(1) lul2=3S"alp*,  pe(O,R),
k=0

for suitable constants g,. In this case the lemma follows immediately
because if f(p) denotes the series with nonnegative coefficients on the right
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of (1) then log f(e™*) is a convex decreasing function of ¢, as one checks
by direct computation. (We emphasize that this latter fact is true simply
because the coefficients in the power series expansion of f are nonnegative
and has nothing intrinsically to do with harmonic functions.) This in
particular gives

f(p2) 1/ log(p3/p2) flpy) 1/log(p2/p1)
@ (763) <(703)

and equality for some p; < p» < p3 < R implies that

(%> 1/ log(02/01)
a3

which means f(p) = const p’ for some constant /; / must be an even integer
by (1)).

Also by an obvious compactness argument (using (2) and the normal-
izations f(p;) = 1, p, = 1) we deduce that for any given oy > o > 1
and any given ¢ > 1/2,9 € {1,2,---} 3¢ = &(ay, 2, dist(q, {1,2,---})) > 0
such that for any 0 < p; < p2 < p3 < R with a; < p2/p1 € oy and
aj < p3/p2 < o we have

® T (2) - 200 (2)"

In the general case J(p) < &9, we approximate by the solution v of the
equation for § = 0, having the same boundary values as u on 8B,-1,(0),
with o > 1 suitably close to 1. According to the H>? regularity theory we
then have

» 0<pr<p2<p3<R,

= const, O<ay<ay<ps,

e = vlla-1p < €d(p)(a = 1)~ |lull,

with ¢ = ¢(n). Thus using this together with (3) we easily conclude the
required result (A.3).
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